

Artificial intelligence based clinical decision support for antibiotic stewardship

William Bolton Exploring Al's impact on AMR 9th February 2024

STAGES OF ANTIBIOTIC DECISION MAKING

Antimicrobial stewardship

A coordinated effort and set of practices aimed at **optimising antimicrobial use** and **prolonging their therapeutic life**, to improve infection patient **outcomes** while minimizing the development of **antimicrobial resistance**

STAGES OF ANTIBIOTIC DECISION MAKING

 Imperial College
 INTRODUCTION
 METHODS
 RESULTS
 CHALLENGES
 CONCLUSION

 Switching from IV-to-oral antibiotic treatment is complex and under-researched.
 and under-researched.
 Conclusion
 Conclusion

Evaluation of a Paradigm Shift From

The American Journal of Medicine Volume 135, Issue 3, March 2022, Pages 369-379.e1

Oral Is the New IV. Challenging Decades of

Noah Wald-Dickler MD.^{a b c}, Paul D. Holtom MD.^{a b}, Matthew C. Phillips MD.^a,

Blood and Bone Infection Dogma: A Systematic

tobert M. Centor MD ^{d e}, Rachael. A. Lee MD ^{d e}, Rachel Baden MD ^a, Brad Spellberg MD ^a 🙁 🗵

Intravenous Antibiotics to

A Narrative Revie

Therapy for the 1

Brad Spellberg, MD¹; Henry F. Chambers,

Endocarditis

Clinical Infection in Practice

March 30, 2020

ELSEVIER

Clinical Audits/Service improvements

stewardship?

Ulrich Schwab

bacteraemia: An or

Stephen Platts ^a, Brendan A.I. Payne

Oral step-down for Review

One key challenge of stewardship is **determining when to switch** antibiotics from **IV-to-oral administration** Numerous studies have shown that oral therapy can be non-inferior to IV

Review

Patient A

3 days

Patient B

5 days

Aim

Utilise a **machine learning** and **routinely collected clinical parameters** to predict whether a patient could be **suitable for switching** from IV-to-oral antibiotics on **any given day**

Imperial College	INTRODUCTION	METHODS	RESULTS	CHALLENGES	CONCLUSION	• 8
London The	e model achiev	es generalisal	ole performai	nce across a r	ange of	CO
dat	asets and patie	ent population	ns.		_	antim optimi

IVOS criteria

baseline

0.66

0.43

IVOS criteria

baseline

0.55

	Metric	1 ^{s⊤} threshold results
MIMIC	AUROC	0.78 (SD 0.02)
	FPR	0.25 (SD 0.02)
	Metric	1 st threshold results
elCU.	AUROC	0.72 (SD 0.02)
	FPR	0.24 (SD 0.04)

|--|

FPR	0.24 (SD 0.04)	0.05 (SD 0.02)	0.28
Metric	Results		Pros	pective data
AUROC	0.78 (SD 0.0)1)		0.77
FPR	0.23 (SD 0.0)2)		0.46

2nd threshold

results

0.69 (SD 0.03)

0.10 (SD 0.02)

2nd threshold

results

0.65 (SD 0.05)

ANALYSIS

Models predict some patients could be **suitable for switching to oral administration earlier**

Imperial College	INTRODUCTION	METHODS	RESULTS	CHALLENGES	CONCLUSION	Hea
Traffic	light recom	mendations	and informati	ve visual		centre for

representations improve model interpretability.

Day 1 Highlights

- Both thresholds predict switching is likely **not appropriate** at this time
- Predictions were correct for 100% of similar examples
- O2 saturation pulseoximetry (feature 4) was of particular interest for these predictions

					Feature			Switch to	Switch to or	al prediction
		Importance	1	2	3	4	5	oral label	1 st threshold	2 nd threshold
Patient		-	0.32	0.51	0.37	0.50	0.41	0	0	0
	1	0.28	0.38	0.54	0.29	0.48	0.46	0	0	0
Eveneele	2	0.25	0.31	0.55	0.28	0.51	0.50	0	0	0
Example	3	0.21	0.29	0.52	0.45	0.52	0.46	0	0	0
	4	0.13	0.32	0.55	0.36	0.51	0.00	0	0	0

Day 2

*

Highlights

- Clinical guidance should be sought, model thresholds disagree on whether switching could be appropriate or not at this time
- Predictions were correct for **50%** of similar examples (0% for the 1st threshold and 100% for the 2nd threshold)
- O2 saturation pulseoximetry (feature 4) was of particular interest for these predictions

					Feature			Switch to	Switch to or	al prediction
		Importance	1	2	3	4	5	oral label	1 st threshold	2 nd threshold
Patient	:	-	0.24	0.25	0.28	0.43	0.77	1	1	0
Fuerente	1	0.38	0.25	0.20	0.25	0.42	0.73	0	1	0
Example	2	0.12	0.21	0.12	0.20	0.43	0.85	0	1	0

optimisation

** Day 5

Highlights

- Both thresholds predict switching could be appropriate at this time
- Predictions were correct for **75%** of similar examples (75% for the 1st threshold and 75% for the 2nd threshold)
- Systolic blood pressure (feature 1) and O2 saturation pulseoximetry (feature 4) were of particular interest for these predictions

					Feature			Switch to	Switch to or	al prediction
		Importance	1	2	3	4	5	oral label	1 st threshold	2 nd threshold
Patient	t	-	0.16	0.49	0.45	0.37	0.59	1	1	1
	1	0.21	0.20	0.58	0.39	0.37	0.45	1	1	1
European la	2	0.20	0.15	0.47	0.43	0.36	0.70	1	1	1
Example	3	0.16	0.16	0.43	0.48	0.36	0.76	1	1	1
	4	0.15	0.18	0.49	0.42	0.38	0.59	0	1	1

Note this system does not cover all aspects of the switch decision making process and should only be used as decision support to highlight when a patient may be suitable for switch assessment

METHODS

centre for antimicrobial optimisation

Models demonstrate reasonably fair performance and threshold optimisation can improve results.

Consitivo attributo	Crown	Equalised o	dds demonstrated
	Group	Initially	With threshold optimisation
	Female	\checkmark	-
Sex	Male	\checkmark	-
	20	\checkmark	×
	30	\checkmark	\checkmark
	40	\checkmark	\checkmark
A co	50	\checkmark	\checkmark
Age	60	\checkmark	\checkmark
	70	\checkmark	\checkmark
	80	\checkmark	\checkmark
	90	X	\checkmark
	Asian	\checkmark	\checkmark
	Black	\checkmark	\checkmark
	Hispanic	\checkmark	\checkmark
Race	Native	×	×
	Other	\checkmark	\checkmark
	Unknown	\checkmark	\checkmark
	White	\checkmark	\checkmark
	Medicaid	X	√
Insurance	Medicare	\checkmark	\checkmark
	Other	\checkmark	\checkmark

Imperial College London Data often poses a challenge for AI systems in healthcare, particularly those focusing on AMR.

METHODS

DATA QUALITY AND MISSINGNESS

INTRODUCTION

- Lack of reliable data on important factors such as absorption
- Appling some important parameters such as • co-morbidities to AI systems is combinatorially complex

HUMAN BEHAVIOUR IS **HETEROGENEOUS**

Antimicrobial stewardship is driven by ٠ human actions which can be difficult to model and predict

Imperial CollegeINTRODUCTIONMETHODSRESULTSCHALLENGESCoProspective evaluation and education are essential for
technological adoption, implementation and impact.

We are currently in the process of obtaining ethics to conduct end user assessment and prospective testing with clinicians in realworld clinical settings

PRIMARY RESEARCH AND EDUCATION

Imperial College

RESULTS

CHALLENGES

CONCLUSION

centre for antimicrobial optimisation

Using AI to optimize antimicrobial prescribing raises important ethical questions.

METHODS

ETHICA	L VIEWPOINT	·
Comment		
Comment		
Developing mora decision-making	al Al to support gabout antimicrobial use	

William J. Bolton, Cosmin Badea, Pantelis Georgiou, Alison Holmes	s a
Timothy M. Rawson	

The use of decision-support systems based on artificial intelligence approaches in antimicrobial prescribing raises important moral questions. Adopting ethical

Check for updates decision is morally right is often unclear. Incorporating such concepts into Al systems is complex but may be supported by the development of a consensus on the optimal approach to decision-making in this context. In this article, we aim to explore potential field field a frameworks and nuances that may be applied to define what is ethical or not during the development of A based china decision support systems (CDSSs)

Variables	Description	Exemplar of starting antimicrobial treatment	Corresponding ad-hoc utility value
Intensity	How strong is the pleasure?	Treating a relevant infection with antimicrobials has the potential to save that person's life	Highly positive utility
Duration	How long will the pleasure last?	Any extension of life is immeasurable while it is reasonable AMR will continue in the near-term future	Positive utility
Certainty or uncertainty	How likely or unlikely is it that the pleasure will occur?	Limited information often means treatment may or may not be helpful and there is always an inherent risk of developing AMR	Neutral utility, without more information
Propinquity	How soon will the pleasure occur?	Treatment can be effective immediately however the same is true for the evolution of AMR	Neutral utility, without more information
Fecundity	The likelihood of further sensations of the same kind	-	Unable to assign
Purity	The likelihood of not being followed by opposite sensations	-	Unable to assign
Extent	How many people will be affected?	Prescribing antimicrobials effects the patient and those close to them, while the development of AMR is a certainty and may affect everyone, causing significant suffering and mortality	Immense negative utility

Imperial CollegeINTRODUCTIONMETHODSRESULTSCHALLENGESCONCLUSIONLondonArtificial intelligence based clinical decision support for
antibiotic stewardship.antibiotic stewardship.ChallengesConclusion

Conclusion

- Artificial intelligence can support antibiotic stewardship through **optimising antibiotic decision making**
- We developed **simple, fair, interpretable, and generalisable models** to estimate when a patient could **switch from IV-to-oral antibiotic treatment**.
- This system could potentially provide clinically useful antimicrobial stewardship decision support, but how it could influence antimicrobial decision making needs to be understood
- For healthcare focused artificial intelligence projects, considering ethical implications, data quality and **prospective** evaluation is essential

London I would like to acknowledge the contribution of the following individuals.

Dr Tim Rawson

Professor Pantelis Georgiou

Professor Alison Holmes

Dr Bernard Hernandez Perez

Mr Richard Wilson

Dr David Antcliffe

Dr Mark Gilchrist

Thank you!

William Bolton

Exploring Al's impact on AMR

9th February 2024

william.bolton@imperial.ac.uk

nature communications

Imperial College London

Routinely collected electronic health record data were used, with clinical guided features.

DATASET

FEATURES

Antimicrobial Intravenous-to-Oral Security Switch (IVOS) Decision Aid

Based on the National Antimicrobial IVOS Criteria Co-produced through a UK-wide multidisciplinary consensus process involving 279 participants

Open Access Published: 09 August 2019

catch22: CAnonical Time-series CHaracteristics

Selected through highly comparative time-series analysis Carl H. Lubba, Sarab S. Sethi, Philip Knaute, Simon R. Schultz, Ben D. Fulcher 🗠 & Nick S. Jones

Data Mining and Knowledge Discovery 33, 1821–1852 (2019) Cite this article

17k Accesses | 97 Citations | 34 Altmetric | Metrics

10 clinical parameters extracted, catch24 applied to each day, each stay and difference calculated

960 unique features

Imperial College

The preprocessing subset was used for unbiased feature and model selection.

FEATURE SELECTION

1 SHAP Values

- AUROC 0.76 for predicting if a patient switch's or not on a given day
- SHAP importance value for each feature

2 Genetic algorithm

Features clinical parameter	Shap value
blood pressure systolic	2.27
heart rate	2.05
blood pressure mean	1.62
o2 saturation pulseoxymetry	1.38
gcs - motor response	1.37

AUROC 0.80

MODEL SELECTION

Hyperparameter optimization

2 Cutoff point

Youden's index: 0.54

Precision-Recall-F1score: 0.74

AUROC 0.80, FPR 0.26

AUROC 0.70, FPR 0.11

Imperial College

Such technology could provide appropriate decision support and promote switching when appropriate.

Models predict some patients could be **suitable for switching to oral administration earlier** from a clinical parameter, health status perspective

When the difference between the real and predicted switch event was minimal, mean patient LOS outcomes were lower Models only analyse a **snapshot of the patient** and **not all factors** that are clinically used to assess a patient's suitability for switching

Imperial College London Developing Moral AI to Support Antimicrobial Decision Making.

Regarding antimicrobial decision making, we believe a **utilitarian approach** is most suitable for developing AI-based CDSSs, and that technology should focus on the likelihood of drug effectiveness and that of resistance in order to have the biggest impact on supporting moral antimicrobial prescribing (Table. 1). Furthermore, for antimicrobials, spatial and temporal considerations are critical to optimise treatment outcomes and minimise the development of side effects or AMR. Decision making in antimicrobial prescribing is frequent, pressing, and both morally and technically complex. But by applying ethical theories to specific scenarios and incorporating moral paradigms, we can ensure that AI-based CDSSs tackle global problems, such as the emerging AMR crisis, in a moral way.

Variables	Description	Exemplar of starting antimicrobial treatment	Corresponding ad-hoc utility value
Intensity	How strong is the pleasure?	Treating a relevant infection with antimicrobials has the potential to save that person's life	Highly positive utility
Duration	How long will the pleasure last?	Any extension of life is immeasurable while it is reasonable AMR will continue in the near-term future	Positive utility
Certainty or uncertainty	How likely or unlikely is it that the pleasure will occur?	Limited information often means treatment may or may not be helpful and there is always an inherent risk of developing AMR	Neutral utility, without more information
Propinquity	How soon will the pleasure occur?	Treatment can be effective immediately however the same is true for the evolution of AMR	Neutral utility, without more information
Fecundity	The likelihood of further sensations of the same kind	-	Unable to assign
Purity	The likelihood of not being followed by opposite sensations	-	Unable to assign
Extent	How many people will be affected?	Prescribing antimicrobials effects the patient and those close to them, while the development of AMR is a certainty and may affect everyone, causing significant suffering and mortality	Immense negative utility

Co-morbid obesity leads to significantly worse infection

outcomes.

MEAN	BODY MASS INDEX (BMI)	LENGTH OF ICU STAY	ANTIBIOTIC TREATMENT LENGTH
HEALTHY (HE)	22.40	5.86	5.18
OVERWEIGHT (OW)	27.38	7.98	5.86
OBESE (OB)	33.34	7.14	5.60
MORBIDLY OBESE (MB)	46.28	8.14	6.39

Statistically significant

Not statistically significant