

Artificial intelligence based clinical decision support for antibiotic stewardship

William Bolton

ADTCA

20th June 2024

Antimicrobial stewardship aims to optimising antimicrobial use and prolonging their therapeutic life to improve infection patient outcomes while minimizing the development of antimicrobial resistance

We research antimicrobial stewardship from a **data driven perspective** and use **artificial intelligence** to build **clinical decision support systems**

STAGES OF ANTIBIOTIC DECISION MAKING

Imperial College INTRODUCTION IV to Oral CESSATION FAIR & SAFE AI CONCLUSION Switching from IV-to-oral antibiotic treatment is complex and under-researched.

One key challenge of stewardship is **determining when to switch** antibiotics from **IV-to-oral administration** Numerous studies have shown that oral therapy can be non-inferior to IV There is a **poor understanding** of the factors that facilitate or inhibit an individual from receiving oral therapy

Aim

Utilise a **machine learning** and **routinely collected clinical parameters** to predict whether a patient could be **suitable for switching** from IV-to-oral antibiotics on **any given day**

Imperial College The model achieves generalisable performance across a range of datasets and patient populations.

CESSATION

IV to Oral

	Metric	1 ST threshold results	2 nd threshold results		IVOS criteria baseline
MIMIC	AUROC	0.78 (SD 0.02)	0.69 (SD 0.03)	0.66
	FPR	0.25 (SD 0.02)	0.10 (SD 0.02)		0.43
eICU	Metric	1 st threshold results	2 nd thr res	eshold ults	IVOS criteria baseline
	AUROC	0.72 (SD 0.02)	0.65 (SD 0.05)		0.55
	FPR	0.24 (SD 0.04)	0.05 (SD 0.02)		0.28
	Metric	Results		Pros	pective data
Imperial College Healthcare	AUROC	0.78 (SD 0.01)		0.77	
EPR 0.23 (SD.0.))2)		0.46

FAIR & SAFE AI

ANALYSIS

Models predict some patients could be **suitable for** switching to oral administration earlier

mperial C	ollege	INTRODUCTION	IV to Oral	CESSATION	FAIR & SAFE AI	CONCLUSION
ondon	Traffic	c light recom	mendations	and informativ	ve visual	
	repre	sentations ir	nprove mode	el interpretabil	lity.	

ICU admission IV-to-oral ICU discharge and IV initiation switch Ð 1 2 3 5 Day n n . . . Switch to oral recommendation **

Day 1 Highlights

- Both thresholds predict switching is likely **not appropriate** at this time
- Predictions were correct for 100% of similar examples
- O2 saturation pulseoximetry (feature 4) was of particular interest for these predictions

Feature								Switch to	Switch to oral prediction	
		Importance	1	2	3	4	5	oral label	1 st threshold	2 nd threshold
Patient	:	-	0.32	0.51	0.37	0.50	0.41	0	0	0
	1	0.28	0.38	0.54	0.29	0.48	0.46	0	0	0
Fuenerale	2	0.25	0.31	0.55	0.28	0.51	0.50	0	0	0
Example	3	0.21	0.29	0.52	0.45	0.52	0.46	0	0	0
	4	0.13	0.32	0.55	0.36	0.51	0.00	0	0	0

Day 2

Highlights

- Clinical guidance should be sought, model thresholds disagree on whether switching could be appropriate or not at this time
- Predictions were correct for 50% of similar examples (0% for the 1st threshold and 100% for the 2nd threshold)
- O2 saturation pulseoximetry (feature 4) was of particular interest for these predictions

Feature							Switch to	Switch to or	al prediction	
		Importance	1	1 2 3 4 5		5	oral label	1 st threshold	2 nd threshold	
Patient	:	-	0.24	0.25	0.28	0.43	0.77	1	1	0
Evene le	1	0.38	0.25	0.20	0.25	0.42	0.73	0	1	0
Example	2	0.12	0.21	0.12	0.20	0.43	0.85	0	1	0

** Day 5

Highlights

- · Both thresholds predict switching could be appropriate at this time
- Predictions were correct for 75% of similar examples (75% for the 1st threshold and 75% for the 2nd threshold)
- Systolic blood pressure (feature 1) and O2 saturation pulseoximetry (feature 4) were of particular interest for these predictions

Feature							Switch to	Switch to oral prediction		
		Importance	1	2	3	4	5	oral label	1 st threshold	2 nd threshold
Patient	t	-	0.16	0.49	0.45	0.37	0.59	1	1	1
	1	0.21	0.20	0.58	0.39	0.37	0.45	1	1	1
Example	2	0.20	0.15	0.47	0.43	0.36	0.70	1	1	1
	3	0.16	0.16	0.43	0.48	0.36	0.76	1	1	1
	4	0.15	0.18	0.49	0.42	0.38	0.59	0	1	1

Note this system does not cover all aspects of the switch decision making process and should only be used as decision support to highlight when a patient may be suitable for switch assessment

*

٠

FAIR & SAFE AI

CONCLUSION

composition contraction contractic contraction contraction contraction contraction contrac

Models demonstrate reasonably fair performance and threshold optimisation can improve results.

Consistivo estributo	Crown	Equalised odds demonstrated				
Sensitive attribute	Group	Initially	With threshold optimisation			
Cou	Female	\checkmark	-			
Sex	Male	\checkmark	-			
	20	\checkmark	×			
	30	\checkmark	\checkmark			
	40	\checkmark	\checkmark			
A 70	50	\checkmark	\checkmark			
Age	60	\checkmark	\checkmark			
	70	\checkmark	\checkmark			
	80	\checkmark	\checkmark			
	90	×	\checkmark			
	Asian	\checkmark	\checkmark			
	Black	\checkmark	\checkmark			
	Hispanic	\checkmark	\checkmark			
Race	Native	×	×			
	Other	\checkmark	\checkmark			
	Unknown	\checkmark	\checkmark			
	White	\checkmark	\checkmark			
	Medicaid	X	\checkmark			
Insurance	Medicare	\checkmark	\checkmark			
	Other	\checkmark	\checkmark			

One major question within antimicrobial prescribing is when is it most appropriate to **stop treatment** Numerous studies have shown that on a population level, **shorter treatment durations** are often **non-inferior** to longer ones There is a **poor understanding** of the factors that facilitate or inhibit an individual from receiving a short duration of therapy

Aim

Estimate patients' **length of stay** (LOS) and **mortality** outcomes for **any given day**, if they were to **stop vs continue** antibiotic treatment

CONCLUSION

come centre for antimicrobial optimisation

Synthetic outcome estimation can make us one stop ahead of antimicrobial resistance.

AUTOENCODER PREDICTIONS

	Metric	Result		
	AUROC	0.77 (95% CI 0.73–0.80)		
	Accuracy	0.73 (95% CI 0.71–0.75)		
Mortality	Precision	0.44 (95% CI 0.36-0.46)		
Classification	Recall	0.67 (95% CI 0.61-0.72)		
	F1 Score	0.75 (95% CI 0.72-0.78)		
	AUPRC	0.55 (95% CI 0.42–0.56)		
LOS Regression	RMSE	3.88 (95% CI 3.84–3.92)		

SYNTHETIC OUTCOME ESTIMATION

	DAY(S)		LC	DS	Mortality			
SCENARIO		Mean delta (days, p- value)	MAPE	MAE	RMSE	Mean delta	MAE	AUROC
STOP	IMPACT	2.71*, <0.01	0.36	3.30	4.80	0.06	0.25	0.66
	CONTROL	0.24, 0.60	0.26	1.32	1.93	0.05	0.15	0.72
CONTINUE	IMPACT	-2.09*, <0.01	0.77	2.85	3.16	0.05	0.18	0.67
	CONTROL	0.42*, 0.01	0.48	2.72	3.76	0.07	0.24	0.64

Imperial College

CESSATION

FAIR & SAFE AI

CONCLUSION

alth amo centre for antimicrobial optimisation

Using AI to optimize antimicrobial prescribing raises important ethical questions.

	Variables	Description	Exemplar of starting antimicrobial treatment	Corresponding ad-hoc utility value
ETHICAL VIEWPOINT	Intensity	How strong is the pleasure?	Treating a relevant infection with antimicrobials has the potential to save that person's life	Highly positive utility
Comment Impu//doi.org/10.1035/s42256-022-00588-5 Developing moral AI to support decision-making about antimicrobial use	Duration	How long will the pleasure last?	Any extension of life is immeasurable while it is reasonable AMR will continue in the near-term future	Positive utility
William J. Bolton, Cosmin Badea, Pantelis Georgiou, Alison Holmes and Timothy M. Rawson Check for updates The use of decision-support systems based on artificial intelligence approaches in antimicrobial prescribing raises important moral questions. Adopting ethical decisionis morally right is offer undeat. Incorporating such concepts into Alsystems upport by the development of a comensus on the optimal approach to decision making in this and muneration with the support of the development of Ab based clinical decision support systems (CDSS)	Certainty or uncertainty	How likely or unlikely is it that the pleasure will occur?	Limited information often means treatment may or may not be helpful and there is always an inherent risk of developing AMR	Neutral utility, without more information
nature machine	Propinquity	How soon will the pleasure occur?	Treatment can be effective immediately however the same is true for the evolution of AMR	Neutral utility, without more information
intelligence	Fecundity	The likelihood of further sensations of the same kind	-	Unable to assign
	Purity	The likelihood of not being followed by opposite sensations	-	Unable to assign
	Extent	How many people will be affected?	Prescribing antimicrobials effects the patient and those close to them, while the development of AMR is a certainty and may affect everyone, causing significant suffering and mortality	Immense negative utility

Imperial CollegeINTRODUCTIONIV to OralCESSATIONFAIR & SAFE AICONCLUSIONLondonPatient and clinician views have been considered, with the
public and stakeholder educated.DestinationDestinationDestination

EDUCATION

PRIMARY RESEARCH

ealth

amo

Imperial CollegeINTRODUCTIONIV to OralCESSATIONFAIR & SAFE AILondonProspective evaluation is necessary to ensure safety
and technological adoption.and technological adoption.

PARTICIPATE IN OUR STUDY!

william.bolton@imperial.ac.uk

We are currently in the process of conducting end user assessment and prospective testing with clinicians in simulated and real-world clinical settings

Imperial CollegeINTRODUCTIONIV to OralCESSATIONFAIR & SAFE AICONLondonArtificial intelligence based clinical decision support for

antibiotic stewardship.

CONCLUSION

Conclusion

- Artificial intelligence can support antibiotic stewardship through **optimising antibiotic decision making**
- We developed simple, fair, interpretable, and generalisable models to estimate when a patient could switch from IV-to-oral antibiotic treatment and a novel approach to estimate the potential impact of stopping treatment
- Such systems could provide clinically useful antimicrobial stewardship decision support, but prospective validation is required

London I would like to acknowledge the contribution of the following individuals.

Dr Tim Rawson

Professor Pantelis Georgiou

Professor Alison Holmes

Dr Bernard Hernandez Perez

Mr Richard Wilson

Dr David Antcliffe

Dr Mark Gilchrist

Thank you!

William Bolton

ADTCA

20th June 2024

william.bolton@imperial.ac.uk

Website

Imperial College London

